sábado, 26 de mayo de 2018

Equilibrio Translacional

Es aquel que surge en el momento en que todas las fuerzas que actúan sobre el cuerpo se nulifican, o sea, la sumatoria de las mismas sea igual a cero.
Formula

EFx = 0
EFy = 0
Ejercicio
Una pelota de 300N cuelga atada a otras dos cuerdas, como se observa en la figura. Encuentre las tensiones en las cuerdas A, B Y C.
SOLUCIÓN:

El primer paso es construir un diagrama de cuerpo libre:
Al sumar las fuerzas a lo largo del eje X obtenemos :
S Fx = -A cos 60° + B cos 40° = 0
Al simplificarse por sustitución de funciones trigonométricas conocidas tenemos:
-0.5A + 0.7660B = 0 (1)
Obtenemos una segunda ecuación sumando las fuerzas a lo largo del eje Y, por lo tanto tenemos:
(Cos 30° + cos 50° )
0.8660A + 0 .6427B = 300N (2)
En las ecuaciones 1 y 2 se resuelven como simultanea A y B mediante el proceso de sustitución. Si despejamos A tenemos:
A = 0.7660 / 0.5
A = 1.532B

Ahora vamos a sustituir esta igualdad en la ecuación 2
0.8660(1.532B) + 0.6427B = 300N

Para B tenemos:
1.3267B + 0.6427B = 300N
1.9694B = 300N
B= 300N / 1.9694
B= 152.33N
Para calcular la tensión en A sustituimos B = 152.33 N
A = 1.532(152.33N) = 233.3N
La tensión en la cuerda C es 300N , puesto que debe ser igual al peso.
Aquí un vídeo:

No hay comentarios.:

Publicar un comentario